Exploring Supervised LDA Models for Assigning Attributes to Adjective-Noun Phrases
نویسندگان
چکیده
This paper introduces an attribute selection task as a way to characterize the inherent meaning of property-denoting adjectives in adjective-noun phrases, such as e.g. hot in hot summer denoting the attribute TEMPERATURE, rather than TASTE. We formulate this task in a vector space model that represents adjectives and nouns as vectors in a semantic space defined over possible attributes. The vectors incorporate latent semantic information obtained from two variants of LDA topic models. Our LDA models outperform previous approaches on a small set of 10 attributes with considerable gains on sparse representations, which highlights the strong smoothing power of LDA models. For the first time, we extend the attribute selection task to a new data set with more than 200 classes. We observe that large-scale attribute selection is a hard problem, but a subset of attributes performs robustly on the large scale as well. Again, the LDA models outperform the VSM baseline.
منابع مشابه
Assessing Interpretable, Attribute-related Meaning Representations for Adjective-Noun Phrases in a Similarity Prediction Task
We present a distributional vector space model that incorporates Latent Dirichlet Allocation in order to capture the semantic relation holding between adjectives and nouns along interpretable dimensions of meaning: The meaning of adjective-noun phrases is characterized in terms of ontological attributes that are prominent in their compositional semantics. The model is evaluated in a similarity ...
متن کاملA Structured Vector Space Model for Hidden Attribute Meaning in Adjective-Noun Phrases
We present an approach to model hidden attributes in the compositional semantics of adjective-noun phrases in a distributional model. For the representation of adjective meanings, we reformulate the pattern-based approach for attribute learning of Almuhareb (2006) in a structured vector space model (VSM). This model is complemented by a structured vector space representing attribute dimensions ...
متن کاملDistributional Semantic Models of Attribute Meaning in Adjectives and Nouns
Attributes such as size, weight or color are at the core of conceptualization, i.e., the formal representation of entities or events in the real world. In natural language, formal attributes find their counterpart in attribute nouns which can be used in order to generalize over individual properties (e.g., big or small in case of size, blue or red in case of color). In order to ascribe such pro...
متن کاملA Brain-Based Feature Model of Adjective-Noun Composition
Brain-based features of meaning (sensory-motor features: sound, color, manipulation, motion, and shape) are used to compare two popular models of adjective-noun semantic composition: element-wise vector addition and multiplication. A large literature (e.g. Fernandino et al., 2015) suggests that perceptual systems contain information that can be extracted using neural decoding (e.g. Anderson, Mu...
متن کاملQuantitative modeling of the neural representation of adjective-noun phrases to account for fMRI activation
Recent advances in functional Magnetic Resonance Imaging (fMRI) offer a significant new approach to studying semantic representations in humans by making it possible to directly observe brain activity while people comprehend words and sentences. In this study, we investigate how humans comprehend adjective-noun phrases (e.g. strong dog) while their neural activity is recorded. Classification an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011